![]() |
||
Главная Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии Рефераты по геополитике Рефераты по государству и праву Рефераты по гражданскому праву и процессу Рефераты по делопроизводству Рефераты по кредитованию Рефераты по естествознанию Рефераты по истории техники Рефераты по журналистике Рефераты по зоологии Рефераты по инвестициям Рефераты по информатике Исторические личности Рефераты по кибернетике Рефераты по коммуникации и связи Рефераты по косметологии Рефераты по криминалистике Рефераты по науке и технике Рефераты по кулинарии Рефераты по культурологии Рефераты по зарубежной литературе Рефераты по логике Рефераты по логистике Рефераты по маркетингу |
Реферат: Финансовые расчетыРеферат: Финансовые расчетыСибирский институт финансов и банковского дела Кафедра: Финансы и кредит Контрольная работа по дисциплине: Финансовые расчеты Вариант №3 Выполнил: студентка группы СЗ-96Бурдюгова О.В. Проверил: кандидат экономических наук Текутьев Владимир Евгеньевич Новосибирск 1998 г. Раздел 1. ПроцентыЗадача №1Ссуда в размере 1,000 д. е. предоставлена 5 февраля и должна быть погашена 5 мая с уплатой простых процентов по годовой ставке 70%. Какую сумму должен возвратить заемщик при начислении:
РешениеДаноP = 1,000 S = P(1+in) i = 0.7 n = t/T S = ? А) метод обыкновенных процентов с приближенным числом дней: t = 24+30+30+4 = 88 T = 360 n = 0.244 1 S = 1,000(1+0.7*0.244) = 414.8 д.е Б) метод обыкновенных процентов с точным числом дней:2 t = 24+31+30+4 = 89 T = 360 n = 0.247 S = 1,000(1+0.7*0.247) = 419.9 д.е. В) метод точных процентов: t = 24+31+30+4 = 89 T = 365 n = 0.244 S = 1,000(1+0.7*0.244) = 414.8 д.е.
1 Все вычисления в данной работе производятся до 3 –го знака после запятой, если другое не оговорено отдельно. 2 Во всех задачах в данной работе при вычислений n = t/T используется метод обыкновенных процентов с точным числом дней, если другое не оговорено условием задачи. Задача №2Вклад в сбербанк в сумме 200,000 рублей помещен под 70% годовых. Рассчитать сумму вклада и начисленные проценты:
Чему равны множители наращения в обоих случаях? РешениеДаноP = 200,000 руб. 1) S = P(1+in) n1 = 7/12 года I = S - P n2 = 2.5 года qs = S/P i = 0.7 2) S = P(1+i)na (1+nbi) S-?, I-?, qs-?, qc-? где na + nb = n na – целая часть периода nb – дробная часть периода
S = 200,000(1+0.583*0.7) = 221620д.е. I = 221620 – 200,000 = 21620 qs = 221620/200,000 = 1.108
S = 200,000(1+0.7)2 (1+0.7*0.5) = 491300 д.е. I = 491300 – 200,000 = 291300 qc = 491300/200,000 = 2.457 Задача №3Выразить при помощи эффективной ставки доходность следующих операций:
Какая из двух операций эффективней?
Дано j1 = 80% ; m1 = 12 ; n1 = 1/12 j2 = 90% ; m2 = 4 ; n2 = 0.25 ie = (1+j/m)mn - 1 Вычислим периодическую ставку при 1- месячном и 3-х месячном депозитах: j1/m1 = 80/12 = 6.667% - на месячном депозите j2/m2 = 90/4 = 22.5% - на 3-х месячном депозите Непосредственное сравнение 6.667% за 1 месяц и 22.5% за 3 месяца не позволяет сравнить эффективность этих операций. Поэтому для сравнения эффективности этих операций вычислим годовую эффективную ставку для каждой из них: ie = (1+0.8/12)12 – 1 = 1.17 = 117% - для 1 - месячного депозита ie = (1+0.9/4)4 – 1 = 1.252 = 125.2% - для 3-х месячного депозита Сравнив годовые эффективные ставки мы видим, что операция с одномесячным депозитом эффективнее операции с 3-х месячным депозитом при данных процентных ставках. Задача №4Вексель на сумму 1,200,000 д.е. со сроком уплаты 1 ноября учитывается в банке 1 сентября по учетной ставке 28 %. Какую сумму получит владелец векселя (без уплаты комиссионных )? Какова величина дисконта? РешениеДаноS = 1,200,000 Sk = S - D ds = 0.28 где Sk – сумма полученная Sk - ? , D - ? клиентом. D = Snds n = t/T
n = t/T = 61/360 = 0.169 D = 1,200,000*0.169*0.28 = 56,784 д.е. Sk = 1,200,000 – 56784 = 1,143,216 д.е. Задача№5За какой срок при начислении сложных процентов удваивается сумма вклада, помещенного под 25% годовых, если начисление производится:
РешениеДаноi = 0.25 1) S = P(1 + i)n , где S = 2P n - ? 2) и 3) S = P(1 + j/m)mn , где S = 2P
2 = 1.25n ; прологарифмируем обе части уравнения lg2 = lg1.25n = nlg1.25 n = lg2/lg1.25 = 0.301/0.097= 3.103 года сделаем проверку: пусть P = 1000 , тогда S = 1000(1+0.25)3.103 = 1998.535 при вычислении до 4-го или 5-го знака после запятой получатся более точное значение n.
2 = 1.0634n lg2 = 4nlg1.063 n = lg2/(4lg1.063) = 2.84 года;
2 = 1.02112n n = lg2/(12lg1.021) = 2.79 года;
Задача №6Какая годовая ставка сложных процентов обеспечивает удвоение вклада до востребования за 1.17 года, если проценты начисляются:
РешениеДаноn = 1.17 S = P(1+j/m)mn j - ? где S = 2P
2 = (1+j/4)4.68 (21/4.68 - 1)m = j j = 4(21/4.68 - 1) = 0.64 = 64%
j = 12(21/14.04 - 1) = 0.605 = 60.5%
j = 360(21/427.05 - 1) = 0.506 = 50.6% (вычисления производились до 4-го знака после запятой). Задача №7По первоначальному варианту соглашения 1 сентября должно быть уплачено 20,000,000 д.е., 1 декабря еще 10,000,000 д.е. Стороны договорились объединить эти платежи одним. Консолидированный платеж должен быть произведен 1 ноября. Какой должна быть его сумма, если соглашение предусматривает начисление простых процентов из расчета 70% годовых. Решение
S - ? 1.11 S = S1(1+n1i) + S2(1+n2i)-1 S = 20,000,000(1+2/12*0.7) + 10,000,000(1+1/12*0.7)-1 = 31880000д.е. Задача №8Два векселя: на сумму 2000000 д.е. (срок платежа 10.09) и 5000000 д.е. (срок платежа 01.11) заменяются одним с пролонгацией до 15.11. Найти сумму нового векселя, учетная ставка при пролонгации 28%.РешениеДаноS1 = 2,000,000 i = d(1-nd)-1 S2 = 5,000,000 n = t/T d = 0.28 Snew = S1(1+n1i1) + S2(1+n2i2) Snew - ? i1 = 0.28(1 - 65/360*0.28)-1 = 0.295 i2 = 0.28(1 - 14/360*0.28)-1 = 0.283 Snew = 2,000,000(1+0.053) + 5,000,000(1+0.011) = 7161555.1 д.е. Задача №9Прогноз годового индекса цен Ip= 2.2. Рассчитать соответствующее значение уровня инфляции за год и в среднем за месяц (в процентах). РешениеДаноIp = 2.2 = Ip – 1 - ? ср.мес = Ipмес – 1 ср.мес - ? Ipмес = Ip1/m где m число месяцев в изучаемом периоде. = 2.2 - 1 = 1.2 = 120% Ipмес = 2.21/12 = 1.067 ср.мес = 1.067 - 1 = 0.067 = 6.7% Задача №10Во сколько раз возрастут цены за год, если инфляция в среднем за месяц ( в процентах) будет иметь значение ср.мес = 4%. РешениеДаноср.мес = 0.04 ср.мес = Ip1/m - 1 Ip - ? Ip1/m = 1+ср.мес Ip = (1+ср.мес)m Ip = (1+0.04)12 = 1.601 раз Задача №11Рассчитать реальную покупательную способность 1,000,000 руб., помещенных на 0.5 года под 108% годовых с ежеквартальным начислением, если среднемесячный уровень инфляции ожидается 4%. Рассчитать реальную доходность данной операции в виде годовой ставки. РешениеДаноP = 1,000,000 Sr = S/Ip j = 1.08 ir = (1+j/m)mn/Ip m = 4 Ip = (ср.мес +1)m n = 0.5 ср.мес = 0.04 Sr - ?, ir - ? Sr = 1,000,000(1+1.08/4)2 / 1.046 = 1275019.76руб. Ir = [(1+1.08/4)4/1.0412] - 1 = 0.625 = 62.5% Задача №12 Рассчитать значение номинальной ставки, которая обеспечит реальную доходность операции, равную 30% годовых, от размещения некоторой суммы на 0.5 года с ежеквартальным начислением, если среднемесячный уровень инфляции ожидается равным 4%. РешениеДаноir = 0.3 j = m[(Ip(1+ir))1/m -1 ] мес = 0.04 Ip = ( мес + 1)12 m = 4 j - ? Ip = 1.0412 = 1.601 j = 4(1.6491/4-1 ) = 0.804 = 80.4% Раздел 2. Финансовая рента (аннуитет) Задача №13 Клиенту банка открыта кредитная линия на 2 года, дающая возможность в начале каждого квартала получать по 5,000,000 д.е., на которые ежегодно начисляются 12%. Рассчитать общую доходность к концу срока. Решение Даноn = 2 S = R/p*[(1+i)n –1] / [(1+i)1/p –1] i = 0.12 S0= S(1+i)1/p R/p = 5,,000,000 S0 - ? S0 = 5,000,000(1.12 2 –1) / (1.12 0.25 –1 )1.12 0.25 = 5,000,000*8.759*1.029 = 45065055 д.е. Задача №14В 1984 году в индийском городе Бхопал произошла катастрофа на химическом заводе американской компании ``Union Carbide``, приведшая к гибели около 2000 человек. Компания предложила выплатить семьям погибших в общей сложности 200 млн. $, производя эти выплаты ежегодно равными суммами в течение 35 лет. Если бы индийская сторона приняла эти условия, то какую сумму фирме следовало поместить в банк для обеспечения в течение указанного срока ежегодных выплат, если на средства соответствующего фонда ежеквартально начисляются проценты по ставке 12% годовых. РешениеДаноS = 200,000,000 S = R[(1+j/m)mn –1] / [(1+j/m)m –1] n = 35 A = R[1 – (1+j/m)-mn] / [(1+j/m)m –1 ] j = 0.12 m = 4 A-? R = [(1+j/m)m –1] / [(1+j/m)mn –1] S = 0.126/61.692*200,000,000 = 411818.54 A = 411818.54* 0.984 / 0.126 = 3216106.6 $ Задача №15Определить размер ежегодных взносов, вносимых в конце года, в следующих случаях:
Процентная ставка – 12%. РешениеДано S = 50,000,000 S = R[(1+i)n –1] / i A = 50,000,000 A = R[1 – ( 1+i)-n / i n = 5 i = 0.12 R - ? Rs = Si / [(1+i)n –1] = 0.12*50,000,000 / (1.125 –1) = 8,000,000 / 1.1 = 7874015.7 д.е RA = Ai / [1 – (1+i)-n] = 8,000,000 / 0.5239 = 13856812 д.е Задача №16Определить срок, за который величина фонда составит 100 млн. д.е., если взносы в фонд в сумме 10 млн. д.е. производятся:
Проценты на взносы начисляются ежеквартально по ставке 12%. Решение Дано S = 100,000,000 S0 = R[(1+j/m)mn –1] / [(1+j/m)m –1] * (1+j/m)m R = 10,000,000 S = R[(1+j/m)mn –1] / [(1+j/m)m –1] m = 4 j = 0.12 n - ?
1.26 / 1.126 = 1.126n –1 2.119 = 1.126n lg2.119 = nlg1.126 n = 0.326 / 0.052 = 6.3 лет
1.699 =1.1699n –1 2.699 = 1.1699n lg2.699 = nlg1.1699 n = 0.4312 / 0.0681 = 6.3 года Задача №17 Определить срок, за который текущая задолженность в 100 млн. д.е. может быть погашена ежегодными срочными уплатами по 25 млн. д.е., вносимыми в конце года, если проценты на остаток долга начисляются ежеквартально по ставке 12%. Рассчитать критическое значение величины срочной уплаты такое, при котором платежи лишь погашают проценты, не позволяя погасить основной долг. Решение Дано A = 100,000,000 1) A = R[(1 – (1+j/m)-mn] / [(1+j/m)m –1] R = 25,000,000 2) S = P + I где I = (1+j/m)mn m = 4 P = A, n = 1 n - ?
1) A = R[(1 – (1+j/m)-mn] / [(1+j/m)m –1] A[(1+j/m)m –1] / R = 1 – (1+j/m)-mn A * 0.126 / R –1 = - (1.03-4)n 0.504 –1 = - 0.888n -0.496 = -0.888n lg0.496= nlg0.888 n = -0.305 / -0.052 = 5.6 года 2) S = 100,000,000 * 1.939 = 193900000 I = 93900000 Rкрит = Sкрит[(1+j/m)m –1] / [(1+j/m)mn]; где Sкрит = I Rкрит = Sкрит = 93900000 д.е.
Раздел 3. Элементы прикладного финансового анализа. Задача №18 Облигации ГКО номиналом 10,000 руб. продаются за 6 месяцев до погашения по курсу 83. Рассчитать абсолютную величину дохода от покупки 10 облигаций и доходность инвестиций в них по схеме простых и сложных процентов. Решение Дано N = 10,000 K = P/N*100 K = 83 1Y = (N – P)/P*365/t t = 6 мес. Yc = (N/P)365/ t –1 W10 - ?, Y - ? P = KN/100 = 8,300 W10 = (N – P)*10 = (10,000 – 8,300)*10 = 17,000 руб. Y = 1,700/8,300*2 = 0.41 = 41% Yc = (10,000/8,300)2 –1 = 0.452 = 45.2% Задача №19 Облигация номиналом 1000 д.е. погашается через 10 лет по номиналу. Она приносит 8% ежегодного дохода. Рассчитать оценку, курс и текущую доходность облигации для условной ставки сравнения 6%. Решение Дано N = 1,000 P = Nq(1 – (1+i)-n) / i + N(1+i)-n n = 10 K = P / N*100 q = 0.08 Y = Nq / P*100 i = 0.06 P - ?, K - ?, Y- ? P = 1,000*0.08(1 – (1+0.06)-10) / 0.06 + 1,000*(1+0.08)-10 = 589.333 + 558 = 1147.333 д.е. K = 1000 / 1447*100 = 69.11 Y = 1000*0.08 / 1447*100 = 5.53% 1В задачах №18 и №19 3-го раздела t – число дней от приобретения ценной бумаги до ее погашения. Задача №20 Приведены исходные данные по трем инвестиционным проектам. Оценить целесообразность выбора одного из них, если финансирование может быть осуществлено за счет ссуды банка под 8% годовых. Динамика денежных потоков
Решение Для обоснования целесообразности выбора одного из трех предложенных инвестиционных проектов, произведем оценку их эффективности по следующим показателям:
где t – порядковый номер шага расчета; Pt – t-й член потока чистых денег; IC – величина инвестированного капитала; T – число лет на которое делается расчет.
3. Срок окупаемости
PP = tmin,
при котором
IRR = i1+(i2 – i1)NVP(i1) / (NVP(i1) – NVP(i2); ( для вычисления IRR возьмем значения i1 = 6%, i2 = 10%) Речь о целесообразности проекта может быть только при следующих значениях вышеперечисленных показателей: NPV >IC, PI >1, PP – чем меньше, тем лучше, IRR=>i. При других значениях этих показателей речь об эффективности инвестиционного проекта не ведется. Расчеты всех вышеперечисленных показателей приведены в таблице приложения 1. Из таблицы видно, что наиболее эффективным и более стабильным является проект 2. О стабильности проекта так же можно судить по диаграмме дисконтированного потока чистых денег. |
|
|